

Electrodeposition of Tin using Supercritical Carbon Dioxide Emulsion

Mana Tanabe, Tso-Fu Mark Chang, Tatsuo Sato, Masato Sone
Precision and Intelligence Laboratory, Tokyo Institute of Technology, Japan

Materials

Conditions

• Pressure : atomosphere (CONV) 15 MPa (EP-SCE)

•Temperature: 343 K

•Current density: 2.8, 4.3, 8.7, 17.3 mA/cm²

• Plating time : 92 , 60 , 30 , 15 min (respectively) Theoretical film thickness , about 13 μm

Pretratment

•Ethanol for 5 min •HCl for 5 min

Results and discussion

Electroplating : 17.3 mA/cm² and 15 min

—CONV —EP-SCE —Sn (reference)

Mechanism of electrodeposit by CONV and EP-SCE

Current efficiency 100 CONV 98 Current efficiency [%] Current efficiency of EP-SCE was higher than that of CONV. 96 · Current efficiency decreased with increasing 94 current density. → H₂ evolution 92 90 10 Current density [mA/cm²]

Conclusions

- No void was observed in the Sn film by EP-SCE because Sc-CO₂ dissolves H₂.
- Grain size of EP-SCE and CONV are about 30 nm.
- Current efficiency of Sn EP-SCE was higher than CONV.

References

[1]T.F.M. Chang, M. Sone, A. Shibata, C. Ishiyama, Y. Higo, Electrochimica Acta, Elsevier 55 (2010) 6469-6475

[2]T.F.M. Chang, M. Sone, Surface & Coatings Technology 205 (2011) 3890-3899